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Outline

•LEFM solution and stress intensity factors for FGM’s 

•Statistical Ritchie-Knott-Rice (RKR) modeling

•Finite element analysis and K-calibration for fracture 
mechanics sample with modulus gradient

•Calculate effect of gradient slope on 

•predicted fracture toughness,KΦ

•average kinking direction, α



Singular Crack Tip Fields in an FGM

• The singular stress field retains the 
strength and form of a homogeneous 
material [Erdogan,1994] 

• As r →0 in an FGM with 

the stress field varies

where KI = mode-I S.I.F. (tensile mode)

KII= mode-II S.I.F. (shear mode)

• Similar to interface cracks, the K
solutions for FGM’s depend on the 
material

oo vxxExE == )(       )exp()( νβ












+=

r

fK

r

fK
x

II
ijII

I
ijI

ij
π

θ

π

θ
βσ

2

)(

2

)(
)exp(



•The RKR fracture model correlates the onset of fracture with the development of 
a critical stress at a distance ahead of the crack tip.

•A basis for this behavior is the influence of sampling volume on the measured 
strength of brittle materials.  Using two-parameter Weibull statistics

Statistical Ritchie-Knott-Rice (RKR) Fracture Model
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•Substituting singular crack tip stress field  (b ≤ B, total sample thickness)

Φ : total failure probability of a part
m : Weibull modulus 
σo : scaling Weibull stress

•Lin, Evans and Ritchie (1986) use this methodology to describe the 
fracture behavior of low-toughness steels as a function of temperature



Principal Question

Given: 

1) Statistical RKR ⇒ Fracture of a brittle material can be 
calculated as function of stresses away from crack tip

2) FGM Crack-tip solution  ⇒ Stresses are a function of 
modulus variation

What are the effects of modulus and strength 
gradients on the toughness and average kink 
direction of a brittle FGM ?



Crack Tip Modeling

•Φ integral is not defined for m>4 due to the strong singularity in σm! 

•Lin, et al 1986 integrated the linear elastic stresses outside the 
plastic zone and nonlinear elastic stresses with a simplified blunting 
region. 

•Here crack is modeled as a slender notch. Integration was 
performed over the sample, excluding a small near-notch 
zone with radius ρ ~a/105

•Results were weakly sensitive to the size of this zone

•For a given failure probability, toughness KΦ can be calculated
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•For the Williams’ and HRR crack-tip fields, the most probably 

distance of fracture initiated, r* has been calculated for the 

mode-I case

•Similarly, for mixed-mode loading, determine the average 

location {x,y}, {r,α} via a weighted Weibull integral

Mean Location and Direction of Fracture
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Procedures

• Two gradient shapes were studied, 
allowing for a twenty-fold change in 
properties: 

– E(x),σo(x) = b x +a

• b = [-18, 18] ; a=10.5

– E(y),σo(y) = (a-1) tanh(b y)+a

• b = [0, 5] ; a=10.5

• Plane strain; Poisson’s ratio, ν=0.3 .

• Calculations were performed for a 
SEC(T) sample with a single crack 
length, a/W = 0.5, W = 1

• K-calibrations were performed for 
each gradient considered



Numerical Procedures

•Finite element code FEAP 4.2 
(Zienkiewicz & Taylor, 1987) used with 
plane-strain linear elastic finite element 
such that elastic constants were varied
quadradically within a single element.

•element formulation checked against 
solution of rigid indentation of FGM
(Kassir, 1974).

•crack tip modeled with 40 singular Stern 
& Becker triangular elements in fan 
array.

•2300 total elements, 9333 nodes.

•Weibull integral was calculated from 
FEA viz.
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Stress Intensity Factors for E(x) and E(y)

• For a homogeneous SEC(T), K=f(P,a/W), 

independent of modulus. For an FGM 
K=f(P,a/W, bW) needs to be determined.

• KI, KII for each gradient obtained by fitting 
the stresses ahead of the crack.

• The E(x) results indicate that the crack tip 
is shielded when entering stiffer material.

• For comparing the different gradients, 
failure probabilities can be calculated for 
the same applied load P,  or for the same 

applied K.

• Changing the basis for comparison will 

reverse the trends observed.

• For E(y) increase in gradient slope 
increase phase angle
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Predicted Fracture Toughness

Weibull strength gradient, σo(x)Modulus gradient, E(x) 

•Linear gradients in x
•Mode-I loading in all cases



Predicted Kink Angle

•Gradient in Weibull Strength, σo(y) 
•Far-field & near-tip mode-I loading only, KII=0



Predicted Kink Angle

•Gradient in modulus, E(y) 
•Far-field mode-I loading; near-tip mixed mode, KI & KII
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Stress Field with Modulus Gradient



Summary

• Finite element calculations indicate stress intensity shielding for cracks in 
an FMG with a positive modulus slope

• Current model predicts expected fracture toughness will increase for 
cracks growing into a more compliant material.

• Kinking analysis predicts sharp kinks in FGMs with strength gradients 
and Weibull moduli, m<7

• For FGMs with E(y), nominal mode-I loading results in mixed-mode 
loading at the crack tip

• For very low Weibull modulus materials, kinking analysis predicts trends 
opposite to that dictated by near-tip considerations


